Modeling analytical ultracentrifugation experiments with an adaptive space-time finite element solution of the Lamm equation.

نویسندگان

  • Weiming Cao
  • Borries Demeler
چکیده

Analytical ultracentrifugation experiments can be accurately modeled with the Lamm equation to obtain sedimentation and diffusion coefficients of the solute. Existing finite element methods for such models can cause artifactual oscillations in the solution close to the endpoints of the concentration gradient, or fail altogether, especially for cases where somega(2)/D is large. Such failures can currently only be overcome by an increase in the density of the grid points throughout the solution at the expense of increased computational costs. In this article, we present a robust, highly accurate and computationally efficient solution of the Lamm equation based on an adaptive space-time finite element method (ASTFEM). Compared to the widely used finite element method by Claverie and the moving hat method by Schuck, our ASTFEM method is not only more accurate but also free from the oscillation around the cell bottom for any somega(2)/D without any increase in computational effort. This method is especially superior for cases where large molecules are sedimented at faster rotor speeds, during which sedimentation resolution is highest. We describe the derivation and grid generation for the ASTFEM method, and present a quantitative comparison between this method and the existing solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling analytical ultracentrifugation experiments with an adaptive space-time finite element solution for multicomponent reacting systems.

We describe an extension of the adaptive space-time finite element method (ASTFEM) used in the solution of the Lamm equation to the case of multicomponent reacting systems. We use an operator splitting technique to decouple the sedimentation-diffusion process from the reaction process. The former is solved with an ASTFEM approach based on the Petrov-Galerkin method and on adaptive moving grids,...

متن کامل

A Characteristic Finite Element Method with Local Mesh Refinements for the Lamm Equation in Analytical Ultracentrifugation

The Lammequation is a fundamental differential equation in analytical ultracentrifugation, for describing the transport of solutes in an ultracentrifuge cell. In this article, we present a characteristic finite element method with local mesh refinements for solving the Lamm equation. The numerical method is mass-conservative by design and allows relatively large time steps to be used. Numerical...

متن کامل

A model for sedimentation in inhomogeneous media. II. Compressibility of aqueous and organic solvents.

The effects of solvent compressibility on the sedimentation behavior of macromolecules as observed in analytical ultracentrifugation are examined. Expressions for the density and pressure distributions in the solution column are derived and combined with the finite element solution of the Lamm equation in inhomogeneous media to predict the macromolecular concentration distributions under differ...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation.

The potential of using the Lamm equation in the analysis of hydrodynamic shape and gross conformation of proteins and reversibly formed protein complexes from analytical ultracentrifugation data was investigated. An efficient numerical solution of the Lamm equation for noninteracting and rapidly self-associating proteins by using combined finite-element and moving grid techniques is described. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2005